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Abstract-- In this paper, the scattering of slow flexural waves by arbitrar% shaped cavities in an
infinite elastic plate is studied using a combined finite element and analytical method. The problem
,s considered as consisting of two interacting systems, a bounded interior region containing all
material and geometric irregularities, and an unbounded exterior region. The interior region is
modelled b using Mindlin type plate bending elements. Wase function expansion is used to
represent the exterior region. ContinuitN of displacements and tractions are enforced at the nodes
on the finite element interface with the exterior region. Comparison of present results for circular
cavity with the analytical solution show s excellent agreement. Finally. scattering by triangular and
square shaped cavities as well as a pair of circular cavities is considered.

INTRODUCTION

In an isotropic. infinite elastic medium, two types of waves (P and S) propagate, but in a
plate in flexure entirely different types of waves propagate. The scattering by an obstacle
of an elastic wave propagating in an infinite medium has been widely studied by Pao and

IN Mow (1973). However, except for the contribution of Pao and Chao (1964). no other study
has been reported on the scattering problem of flexural waves in a plate.

Three types of waves can propagate in an isotropic elastic plbte in flexure based on
Mindlin theory. slow flexural. fast flexural and thickness shear %wa es. Pao and Chao (1964)

studied the scattering of slow flexural waves in an isotropic infinite elastic plate by the wave
function expansion method. In their treatment, both the incident and scattered fields are
expanded in Fouricr Bessel series. For a cylindrical inclusion having circular cross-section,
thc evaluated the scattered wave field by satisfying the boundary conditions prescribed
over the surface of the inclusion. However, the boundary conditions for a scatterer having
arbitrary cross-section cannot be satisfied which is the limitation of the analytical approach.

The method of wave function expansion has also been used to study scattering of elastic
waves in two- and three-dimensional problems. Pao and Mow (1973) give a comprehensive
coverage of this subject. The limitation of this method, as noted above, is its inability to
satisfy the boundary conditions over the scatterer-host medium interface when the scatterer
has arbitrary cross-section.

Problems involving arbitrary geometric configurations are more ammenable to numeri-
cal methods such as finite elements and finite differences. An obvious shortcoming of such
schemes is that the domain, which is usually infinite for the class of problems under
consideration, has to be modelled by a finite-sized model. Attempts have been made (Lysmer
and Kuhlemeyer, 1969" Smith. 1974: Kausel et al., 1975; Chow and Smith, 1981" Medina
and Taylor, 1983: Lee and Dasgupta, 1984) to reduce the error stemming from the use of
finite-sized model by prescribing appropriate boundary conditions to be used along the
boundary of the finite computational domain. By and large, they are either approximate in
nature or work best at certain angles of incidence. Similar attempts for transient wave
propagation has been reported (Engquist and Majda. 1977, Higden, 1986, 1987). Recently
Ting and Miksis (1986) proposed a scheme to generate the exact boundary data but a
numerical implementation and a comparison of accuracy of their scheme is yet to be
reported.
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Scotter

Fig. 1. Geometry of the problem.

The present authors used a numerical technique combining the wave function expan-
sion procedure with the finite element method to study this class of problems. The success
of this technique has been reported earlier (Shah et al., 1982a,b; Datta et al., 1982; Datta
and Shah, 1982; Abduljabbar et al., 1983; Shah et al., 1985; Shah et al., 1987;
Paskaramoorthy et al., 1988). In these studies, the general strategy was to draw a fictitious
boundary B (Fi,. I) enclosing the scatterer. The region interior to this boundary (referred
to as "interio, ion" in the following) which consists of the scatterer and a finite region
of host mediui. ,as modelled through an assemblage of conventional finite elements. The
solution in the exterior region was represented by wave function expansion. Imposing
continuity conditions for displacements and traction forces at the nodal points on B, the
unknown coefficients associated with the scattered waves in the exterior region and the
displacements at the boundary nodes were obtained. They were then used to calculate
the field at any point outside B as well as the nodal displacements in the interior region.
The technique has the advantage that the scatterer can be quite arbitrary in shape and in
material properties. Also the multiple scattering by a cluster of scatterers can be studied.
In essence, this numerical technique, which exploits the great flexibility of finite elements
in modelling complicated geometries and boundary conditions, relies on wave functions to
capture the far-field behaviour. Research is now underway to extend this technique to
analyse problems where explicit wave functions are not available.

In this paper, we use this numerical technique to study the scattering of flexural waves
by a cylindrical scatterer (or a cluster of scatterers) in an isotropic infinite elastic plate. The
interior region is modelled by Mindlin type plate bending elements. The exterior region is
represented by flexural wave functions. The cross-section of the scatterer can be arbitrary,
but for illustration purposes we only consider circle, triangle and square shape cavities. The
case of multiple scattering by two right circular cylindrical cavities is also considered. The
plate is excited by time harmonic slow flexural wave that is incident obliquely making an
angle 7 to the x-axis. (Fig. I). Numerical results are presented for various normalized
frequencies in the range 0.1-0.9, the normalization factor being P, = irC,/h in which h is
the plate thickness and C, is the shear wave velocity in an infinite elastic medium. Note
that the normalization factor for frequencies is the lowest circular frequency of the simple
thickness shear modes of a plate based on the three dimensional theory.

FORMULATION OF THE PROBLEM

(a) Finite element model of interior region
The details of the formulation of Mindlin type plate bending elements have been

discussed by Cook (1981) and Hughes et al. (1977). so that there is no need for repeating
them here. Only the relevant details will be given to underscore the discussion.
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In Mindlin's theory for flexural vibration of plates, the displacement components,
when referred to Cartesian coordinates, are assumed as

u, = :O,(X. vy) e

11, :0, (xy) e '

U = w(xvy) c '. (I)

Thus the displacement at any point is completely defined by the components of the gener-
alized displacement vector IW}, where

Iw Kf= <w >r (2)

in which w is the lateral displacement, q1, and 0', are rotations in the x: and v: planes,
respectively.

In eqn (1), a steady state time variation of e "" is assumed (p-circular frequency). This
occurs throughout and may be omitted for notational convenience.

The generalized displacement vector 16,' at a point within an element e is interpolated
from the nodal values as

{W} = [N.(x,y)]{q' }  (3)

where [N(x,y)] contains the interpolation functions, {qC} is the vector of nodal variables
for element e.

The bending moments {M} and shear force ' are related to the generalized strain
components {h} and {:,} by the expressions

{M' = [Dh]{: (4)

{Q k = [Dj;} (5)

where

tM: = <M"MjM.) r  (6)

Q} = <QQ,> (7)

\ + \ + (8)

j(c + (9)0]
Eh I E' 0 10)

[D= 2 (_) [2 l-v1 (0

[D,] = 2 i(.) 0 (11)

2(1 +%) 0 1

In the above, E is the Young's modulus, h the thickness, v the Poisson's ratio and K2 the
shear correction factor. Note that we use the Mindlin's value of i-',/ 12 for the shear correction
factor instead of the convent~anal Reissner's value of 5'6. The Lagrangian of the system
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can be written as

L= (M'*+Q'*p2 WPW*) dxdy- (F 8 'W+F + W,) ds (12)

where (*) indicates complex conjugate, FB and WB are, respectively, the generalized traction
and displacement vectors on the boundary B, and [P] is the inertia matrix which is given
as

[h 0 01

[P]=P 0 h3/12 2 l (13)
10 0 h3/ 121

in which p is the mass density per unit volume. The governing equations of motion of the
system can be obtained by minimizing the eqn (12) and expressed as

[S] {q} = {R} (14)

where

[S] = [K]-p 2[M] (15)

in which [K] and [M] are, respectively, the global stiffness and mass matrices of the interior
region, {q} is the vector of nodal variables and IR} is the vector of generalized loads which
has non-zero components corresponding to the interface degrees of freedom only. Note
that the boundary B is a fictitious circle of radius RB, which is arbitrary.

If the vector {q} of nodal variables is separated into two parts, {q8 } corresponding to
the nodal variables at the boundary B and {q} corresponding to the nodal variables
elsewhere in the interior region, eqn (14) can be written as

Sil SIB [q, 1(16[0
S SBB qB RJ 

(

(b) Flexural wave functions for exterior region (scattered field)
In the exterior region, the total displacement u, which consists of the incident wave

field component u(I and scattered wave field component ul" , can be written, in cylindrical
coordinates system, as

Ur = z*fr (r, 0)

uo = zOo (r, 0)

u, = w(r, 0). (17)

The steady state time factor e-iP' is omitted in the foregoing equations and hereafter when
its existence is apparent. The generalized displacement components w, 0, and i0 may be
expressed in terms of three potentials WI, W, and H, as given by Mindlin and Deresiewicz
(1954),

W= W, + W2  (18a)

tr=(U]-I) ?r +(a,- 1) W + I OH (18b)

Ir W I r 00

to = (a,-) r G0 +(a2-1)r 1 O - M (18c)
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where the three potentials satisfy

(V2 +62)W, =0 (19a)

(V +62) W, = 0 (19b)

(V 2 +(, 2)H = 0. (19c)

In the foregoing equations

626 = 4 _(RS)±/(R'S)2+46o-i }  (20a)

<a,>" = (R6 -S 0 ) K2&>1 (20b)
64z  _ 2 R -S I )/(1-_V.) 2 c

R=Ih2/12, S = DI 2 Gh, 64 = pp2h/D (20d)

where h is the thickness of the plate, v the Poisson's ratio, D the flexural rigidity and G the
shear modulus. The wave number 6, is always real. For frequencies p < Po, both the wave
numbers 62 and o are imaginary. The scattered wave field satisfying eqn (19) can be written
as

W, = Y {A,.H,(6,r) cos nO+ A,H,(6,r) sin nO} (21a)

W2 = {BK,(S 2 r) cos nO+ B2,K(Sr) sin nO} (21b)

H = {C,,K,(Cr) sin nO+C,, K,(6fr) cos nO} (21c)

where the constants A ,,, B1, and C1. corresponds to a symmetric problem and A2,,, B2.
and C2, corresponds to an anti-symmetric problem.

g2 = _62, 62 = _J2. (22)

H, is the Hankel function of the first kind and K, the modified Bessel function of the second
Lind. The summation goes from zero to infinity through integer values of n. Note that the
eqn (21) represents a wave field that radiates outward from the origin. Substituting eqn
(21) and eqn (18), we get

w = {[A.g, +B.g 21 cosnO+(A2 ,g1 +B 2ng2 ] sin nO}

i/i = {[Aigr, + Bi.gr2 +Cl.gr3] cos nO+[A2.9r1 + B2 g2- C',.q,3] sin nO}

00= E {[Alng,1 +B 1ng, 2 +C,,,g,3] sin nO+[-A 2.9,1 -B 2 .g, 2 +C 2.g, 3] cos nO}. (23)

Expressions for g1, g 2, etc. are presented in the Appendix. Evaluating eqns (23a-c) at each
of the nodes lying on the boundary B, the vector q'" of nodal variables due to scattered
field can be written as

'-'i" = [GI{a} (24)

where fq(B ,t, contains the nodal variables, in cylindrical coordinate system, evaluated at
the nodes on the boundary B. {a} contains the unknown coefficients A, , Bin, etc. In writing
eqn (24), the summation of the terms containing the coefficients A ,, B In and C2, is taken
from zero to ((NE/2) - I) where NB is the number of nodes on the boundary. The summation
of A ., B2, and C , goes from one to NB/ 2 . Thus [G] is a square matrix.

The vector {q' 1 }),, in eqn (24) can be transformed into Cartesian coordinate system
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as

{qB)} = [T][G]{a} (25)

where [T is the transformation matrix.
The next step is to construct the boundary nodal force vector corresponding to the

generalized displacement vector {q ')}. It should be noted here that the components of the
force vector {Rs)} corresponding to the displacements w, 0., and 0,, at the boundary B are
Q,, (MI,,I-M,,I2) and (M,,12 +Moli), respectively, where /, (= cos 0) and 12 (= sin 0) are
the direction cosines of the normal to the boundary B.

The stress resultants for the displacement field in eqn (23) can be expressed as

Ql= K2 Gh Y{[A InQ' 1 + BI.Q, 2+ C.Q,3] cos n1O

+[A 2nQ,I+ B2 .Q, 2-C 2.Q, 3] sin nO} (26a)

M, = DY {[A1 .M,1 +B 1 nMr2 +CnM, 3] COS nO

+ [A2.M,I + B,,M,2 - C2.M, 3] sin nO} (26b)
D

Mr = D(I-v) Y [A,.Mr,, +B nM 2,+C,r,31 sin nO
2

+ [ -A 2 nMr, 1 - B2.M,,2 + C 2.M, 3] cos nO. (26c)

Expressions for Ql, Q,2, etc. are given in the Appendix. Evaluating the stress :esultants at
each of the nodes lying on the boundary B and multiplying by the tributary area, the
boundary nodal force vector can now be assembled as

{RS)} = [F] {a}. (27)

As the number of ns considered in writing eqn (27) is the same as that for eqn (24), the [F]
matrix is of the same size as [G] and square and non-singular. Eliminating {a} from eqns
(25) and (27), we get

{RB1} = [Sf]{qB1 } (28a)

where

[Sj] = [F][G] '(T . (28b)

The impedance matrix [S,] is square and complex-valued but unsymmetric.

(c) Incident wave field
The incident slow flexural wave propagating in a direction making an angle y with the

x-axis can be represented by

W(I') = ei", . ;si) W12) = H i ) = 0. (29)

For this incident field, the displacements and stress resultants can be derived and the vectors
tqf- and {R' )} corresponding to {q(B} and {R('I • can be constructed in a similar manner.

(d) Global solution
The continuity conditions of displacements and traction forces at the boundary nodes

are

qB = qW +q') (30a)

R, = R_ ' +RIB. (30b)
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Imposing these conditions on eqns (16) and (28). we get

[SBB - SBI S11 SB - S, I{B} = R [S,]{.='R (3 1a)
and

qn = -S-t 'S1qB. (31b)

The displacements of the boundary nodes as well as of the nodes in the interior region are
obtained from eqn (31). Then the eqns (30a) and (25) are used to obtain the unknown
coefficients in the scattered wave field.

NUMERICAL RESULTS AND DISCUSSION

(a) Plate bending elements
The modelling of the interior region by plate bending elements, which interact vi;.h

the infinite medium (exterior region). is of some interest from the finite element point of
view. A number of different plate bending elements have been reported in the finite element
literature. The literatnre, in this area is so vast that no attempt will be made here to review
it. Among the plate bending elements available, those based on Mindlin's plate theory and
selective reduced integration techniques are found to be very effective in modelling the thin
as well as thick plate behaviour. Hughes et al. (1977) and Pugh et al. (1978) studied the
performance of quadrilateral plate bending elements in static problems. Their performance
in the context of free vibration analysis has been reported by Hinton and Bicanic (1979).
Almost all the elements studied in the aforementioned references possess at least one
spurious zero-energy mode. It should be noted here that the performance was observed in
problems (referred to as "conventional problems" in the sequel) where the plate has a finite
span and simple boundary conditions. The prescription of certain boundary conditions
may suppress the mechanisms formed by the zero-energy modes. In most applications,
these spurious zero-energy modes pose no problem, but occasionally they act up (Hughes
et al., 1977: Hughes and Cohen, 1978) when they are weakly coupled to the boundary
conditions. The "heterosis" element proposed by Hugi1ic- L. al. (1978) seems to alleviate
these shortcomings by having the correct rank and thus possessing no zero-energy mode.
Its performance in dynamic problems has not been reported in the literature.

In this study, we consider an infinite plate. However, only the interior region, which
is finite, is discretized to get the finite element model. The size of elements is kept within
a certain limit in order to ensure that the finite element model transmits the waves effectively.
For linear quadrilateral elements, the size is limited to 1 of the minimum wave length of the
types of wave being considered. The corresponding "size factor" for quadratic elements is
]. During the experimental stage it was observed that the element aspect ratio (ratio of
element size to its thickness) lay within a range of 0.2-1.5. In this range, the elements are
known to behave well in conventional problems (no shear locking. etc.). Only four and
nine node Lagrange elements and a heterosis element were used in the experiments. The
element stiffness was evaluated selectively integrating the bending and shear terms. Results
of extensive numerical experiments indicated that all three elements performed well. The
nine node Lagrange element and heterosis element exhibited a high level of accuracy and
very often, these results hardly differed. The convergence of the four node element was
somewhat slow compared to the other two elements, but ultimately converged to the correct
results with mesh refinements.

(b) Scatterinq hiv circular carities
In order to observe the performance of the plate bending elements in the present

context as well as to establish the validity of the proposed technique, we first consider the
scattering problem of incident slow flexural waves by a circular cavity in an infinite plate,
the angle of incidence being zero. The mesh used for this problem is shown in Fig. 2.

The displacements along the circumference of the cavity are computed for various
values of (a) the normalized frequency f5 = pp,, and (b) the ratio J of the radius a of the
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N1 r No. of nodes interior to the boundary B

Fig. 2. Finite element mesh.

cavity to the thickness h of the plate. We considered normalized frequencies in the range
0.1-0.9 and d from 0.5 to 5.0. The results are found to be in good agreement with the

analytical solution. As an illustration, the comparison of a displacement component for a
normalized frequency of 0.9 and j of 2.0 is shown in Fig. 3. The results of the nine node

Lagrange element are not shown on the figure as they are almost identical to those of the
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Fig. 4. Variation of tangential moment (parameters are the same as in Fig. 3).

heterosis element. The material properties used in this and other subsequent problems are
ju = 1.0, v = 0.3 and p = 1.0.

A quantity of general interest in problems involving a cavity is the hoop stress (tan-
gential moment M, in the present case) along the circumference of the cavity. However,
the stress or stress resultant evaluated using the finite element technique at points other
than certain Gauss points will be less accurate. The moments are, therefore, computed at
those Gauss points that correspond to the shear quadrature and located close to the cavity.
These points lie on a circle of radius 1.I108J.

Figure 4 shows thc normalized moments MT = Mr/Mo so calculated along with the
analytical results. The normalization factor M 0 in the above is given by M0 =
-D 21(rI- I). The results of the nine node Lagrange element are not shown again as its
plot symbols tended to overlap with those of heterosis element. It is seen from Figs 3 and
4 that the nine node Lagrange element and heterosis element are very accurate in modelling
the flexural wave scattering phenomenon. The accuracy of the results of the four node
element is improved upon refining the mesh.

(c) Scattering by, arbitrary shaped cavities
Attention is next focussed on the scattering problem of cavities having square and

triangular shapes. The radii of their circumscribing circles are i. The circular cavity con-

SAS 2S:10.F
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sidered previously represents a streamlined scatterer whereas the square and triangular
cavities have a blunt nature. The case of multiple scattering by a pair of cavities is also
considered where the radii of the cavities are J- and d/'2 and their centres are located at a
distance 25. It should be mentioned here that these problems pose no exceptional difficulties
to the proposed method. On the other hand, they cannot be solved by analytical means. In
these problems, the absolute values of the tangential moments Ri, are evaluated at Gauss
points located close to the circumference of the cavities. (For the square they are on a
square with circumscribing circle of radius 1.07j, for the triangle these are on a similar
triangle with circumscribing circle of radius 1.08J, and for the two circles the results are
around the bigger circle at Gauss points on a concentric circle of radius 1.025J). The
normalized values JAfr7 are then plotted against the polar angle measured at the origin
from the positive x-axis in the counterclockwise direction. Only heterosis elements are used
for triangular and square cavities. In the case of multiple scattering problems. the finite
element model of the interior region tended to be so large that it placed a severe burden on
the storage capacity of the computer. Since the bandwidth of the four node element is about
half of the nine node element, we alleviated the storage problem by using only the four
node elements. Also the results will be presented only for the larger circle in this case.

Figure 5 shows the effect of various i values on the tangential moment. With increasing
Ji more and more terms of eqn (21) need to be considered to achieve convergence and the
fineness of the mesh must be increased accordingly. In this and other subsequent figures,
we included the results of circular cavity to facilitate comparison with the results of other
cavities. It is seen from Fig. 5 that maximum values occur at the least value of d. The higher
order terms in eqn (21) that become active as J increases seem to have the effect of reducing
the maximum value but, at the same time, producing more ripples. For the circular cavity,
however, the ripples are confined to the first quadrant. This is a "'shadow" region to the
incoming wave, and the cause of ripples may be partly attributed to the wave that creeps
along the boundary of the cavity and disperses in the shadow region. In Fig. 5b, some
ripples are observed even in the second quadrant suggesting that the presence of another
cavity nearby may extend the shadow region. As anticipated, the corner regions in square
and triangular cavities suffer abrupt increase in moments (Fig. 5c, d).

In Fig. 6, we present the results for various normalized frequencies. The value of d and
angle of incidence ,are fixed at 2.0 and 0 , respectively. The maximum values of the moment
seem to occur for the lowest frequency.

Lastly in Fig. 7. results are presented for angles of incidence 0 , 45 , 90 , 135 and
180 . The angles of incidence 135 and 180 are omitted for circular and square cavities as
they are similar to 45 and 0 , respectively. Furthermore, different angles of incidence in
the case of a circular cavity merely cause a shifting of the curves in the plot. It is seen from
Fig. 6 that the maximum values of the moment for different angles of incidence are more
or less the same.

CONCLUSION

A hybrid finite element and wave function expansion has been presented to study the
scattering of slow flexural waves by arbitrary shaped scatterers in an infinite elastic plate.
The scatterer can be either a solid or a cavity. The numerical results presented here agree
well with the available analytical results. The advantage of the method is that the near field
region containing all inhomogeneities can have quite arbitrary material properties. Also
the multiple scattering by a cluster of scatterers can be studied without much difficulty. It
is found that the maximum value of the tangential moment around the cavities occurred at
the lowest frequency and lowest a/h ratio. It is also found that the maximum value was not
much affected by the direction of the incident wave.

Three Mindlin type plate bending elements, namely, four and nine node Lagrange
elements and a heterosis element have been used to model the flexural wave scattering
phenomenon. Their performance in a similar situation has not been documented previously.
It is found that all three elements performed well. The four node element exhibited slow
convergence characteristics.
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APPENDIX

The terms ,q,. appearing in eqn (23) are as follows

t,q = H (6, r) (A 1)

. = K,(O.r) (A2)

0,, = 6 1 [n H, (6, r) - 6, H, (6, r)] (A3)

.912 = FYI K,,(5.r) -. ,T, J.r)] (A4)
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I "I
K, ((r) (A5)

r

gj= -61 H,(6 r) (A6)
r

n
_,= -d,. K,,(J. r) (A7)

r

The terms Q,,, Q,2, M,1 , etc. appearing in eqn (26) are as follows.

aQ = 1 rH(61r)-6,H,, ()r) (A9)

C . ,n&(,r , (,r (AlO)

n
Qr = K,((br) (All)

r

, [ (n-) ,H(,r)+(l-v) 61H, +(6,r) (A12)
r 2 r

M" n 1 + 2 (1)

,, = (lv )(n- iK,(6r)- K. (J ,r) (A14)

r2 It r
n I1S I

M ,, -H K_, (6 r)I (A I5)

2 n I ) ,.r) - H_ (.r)(

M,, d = .,L(n - r) - rT:K_&5r) (A16)

2n, n - 1) + K, ((.r) + 26 K_, }. (A7)

uc t: e 1o,,FcNTIS C. k&I
DL) C TA8 [
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